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Abstract 

  

 This work involves the research of an angular motion of a mechanical system consisting of coaxial 

bodies of variable mass in a translating coordinate system. The author gives a theorem on the change in the an-

gular momentum of a system of variable mass coaxial bodies with respect to translating axes. The research of 

motion dynamics is conducted using the example of two coaxial bodies. The modification of mass-inertia pa-

rameters of coaxial bodies causes nontrivial changes of system angular motion. The article describes a special 

developed method for qualitative phase space analysis, based on the evaluation of a phase trajectory curvature. 

The method suggested makes it possible to determine the phase trajectory shape and to synthesize conditions 

for special motion modes realization (for example, nutation angle monotonous diminution or magnification). 

The results obtained can be used to describe the motion of a coaxial dual-spin spacecraft, performing active 

maneuvers with a change in mass. 
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1.   Introduction 
 

Research of attitude motion of a system of 

coaxial rigid bodies and gyrostats always was and 

still remains one of the important problems of theo-

retical and applied mechanics. The dynamics of the 

attitude motion of rotating rigid bodies and gyrostats 

is a classic mechanical research object. Basic aspects 

of such motion were studied by Euler, Lagrange, 

Kovalevskaya, Zhukovsky, Volterra, Wangerin, Wit-

tenburg. The main results of the attitude motion re-

search can be found in appropriate treatises [1-5].  

However, the study of the dynamics of rotat-

ing bodies and gyrostats is still very important in 

modern science and engineering. Among the basic 

directions of modern research within the framework 

of the indicated problem it is possible to highlight the 

following points: deriving exact and approximated 

analytical and asymptotic solutions [1-5, 25, 28], 

research of a stability of motion conditions [6-16], 

the analysis of motion under the influence of external 

regular and stochastic disturbance, research of dy-

namic chaos [17-22], research of non-autonomous 

systems with variable parameters [23-30].  
N. Ye. Zhukovsky studied the motion of a 

rigid body containing cavities filled with homogene-

ous capillary liquid. The research showed that the 

equations of motion in such case can be reduced to 

the equations of the attitude motion of a gyrostat. 

Also analytical solutions of some special modes of 

motion of a gyrostat were found. 

The ordinary differential equations of a gy-

rostat attitude motion with constant angular momen-

tum were solved analytically by Volterra. Volterra 

solution has generalized a similar analytical solution 

for a rigid body in case of Euler. In the works of 

Wangerin and Wittenburg solution of Volterra is re-

duced to the convenient parameterization expressed 

in elliptic integrals. 

The analytical solution for attitude motion of 

heavy dynamically symmetric gyrostat, colligating a 

classic solution for a heavy solid body in the case of 

Lagrange, is given in a paper [25]. In the indicated 

published works solutions for all Euler angles (pre-

cession, nutation, and intrinsic rotation) are found in 

elliptic functions and integrals. Also modes of mo-

tion with constant and variable relative angular mo-

mentum of gyrostat rotor are considered. 

The issues of the rotational motion dynamics 

of a gyrostat are very important for numerous appli-

cations such as the dynamics of satellite-gyrostats, 

spacecrafts and aircrafts. 

The attitude dynamics of gyrostat satellites 

and dual-spin (double-rotation) satellites has been 

studied by a number of scientists [6-22]. Most of 

these efforts were aimed on finding the equilibrium 

states in the presence of external disturbance torques 

[6-9], on analysis of the stability of spinning satel-



lites under energy dissipation [10-16]. Some authors 

recently have investigated bifurcation and chaos in 

the gyrostat satellites [17-22]. 

Despite above-mentioned wide spectrum of 

research results the stated problem still remains actu-

al, especially for the variable structure rigid bodies 

systems and variable mass dual-spin spacecrafts.  

The possibility of change in some mass and 

inertia parameters and the structure variability can be 

explained by the fact that a spacecraft (SC) performs 

active maneuvers with the use of the jet engine. 

Any SC in orbit is affected by external dis-

turbances of different kind, e.g. the solar radiation 

pressure, the gravity gradient torque, the magnetic 

torque caused by the Earth’s magnetic field, or the 

aerodynamic torque due to the action of a resisting 

medium like the Earth’s atmosphere. However all 

these external disturbances are not large in compari-

son with the jet engine thrust of the SC on the active 

motion stage (e.g. inter-orbital transfer, orbit correc-

tion, attitude reorientation). Moreover, variability of 

mass parameters (mass and moments of inertia) has a 

considerable influence on attitude dynamics. The 

change of the moments of inertia entails change of 

angular momentum, which is the basic characteristic 

of attitude motion. Thereupon mass (structure) varia-

tion is one of the primary factors determining attitude 

motion of a SC.  

For the purposes of better understanding the 

essence of this problem it is important to give a brief 

overview of the main considered engineering peculi-

arities of SC’s active motion. An SC in order to per-

form an active maneuver (e.g. inter-orbital transfer) 

should create a jet engine thrust and thus obtain ac-

celeration or braking momentum V  (reor-

bit/ deorbit burn). 

This momentum should be generated exactly 

in a pre-calculated direction. Engine thrust is usually 

focused along the SC’s longitudinal axis, therefore it 

is necessary to stabilize the longitudinal axis in order 

to ensure the accurate momentum generation. Stabi-

lization of the longitudinal axis can be carried out in 

a gyroscopic mode when SC spins around the longi-

tudinal axis which is oriented in the calculated direc-

tion. 

Momentum generation is not instantaneous, 

it demands a continuous operation of the jet engine 

within several seconds (or minutes). During this pe-

riod of time a SC performs two motions: trajectory 

motion of a center of mass and an angular motion 

around it. Such angular motion obviously changes 

the location of the longitudinal axis and, hence, a 

direction of thrust. 

The time history of thrust direction strongly 

affects the value and direction of a transfer momen-

tum deviation. Consequently, the transfer is per-

formed to the orbit different from the desired one. 

There is a "scattering" of thrust (Fig. 1). Therefore, it 

is very important to take SC angular motion into ac-

count during the analysis of the powered trajectory 

motion. 

It is necessary to obtain the angular motion 

which ensures that SC’s longitudinal axis (and the 

thrust vector) performs precessional motion with 

monotonously decreasing nutation angle. Thus the 

longitudinal axis travels inside an initial cone of nu-

tation and the thrust vector naturally comes nearer to 

an axis of a precession which is a desired direction of 

transitional momentum output ("is focused" along a 

necessary direction). 

When the angular motion does not provide a 

monotonous decrease in nutation angle the longitudi-

nal axis moves in a complicated way. In such case 

the thrust vector also performs complicated motion 

and "scatters" the transitional momentum. A transfer 

orbit scatters as well. 

Among the works devoted to the rigid bodies 

systems with variable mass and inertia parameters it 

is possible to mark the following [17, 18, 23, 24, 28, 

30]. The work [18] contains the analysis of chaotic 

behavior of a spacecraft with a double rotation and 

time-dependent moments of inertia during it’s free 

motion. The main investigation results of variable 

mass system dynamics should be found in the 

monographies [23, 24]. These results include Ivan V. 

Meschersky theory of motion of bodies with variable 

mass, theory of “short-range interaction” and “solidi-

fication (freezing)”. 

The equations of variable mass dynamically 

symmetrical coaxial bodies system were developed 

in papers [28]. Also in [27] the attitude motion of 

coaxial bodies system and double rotation spacecraft 

with linear time-dependent moments of inertia were 

analyzed and conditions of motion with decreasing 

value of nutation were found. The results [27] can be 

used for the analysis of attitude motion of a dual-spin 

spacecraft with an active solid-propellant rocket en-

gine. 

Current paper represents continuation of the 

research described in [27-30] and is devoted to the 

dynamics of variable mass coaxial bodies systems, 

unbalanced gyrostats and dual-spin spacecrafts. 

The paper has the following structure: Sec-

tion 1 – introduction of the primary theoretical and 

physical background, Section 2 – mathematical defi-

nition of the coaxial bodies attitude motion problem 

in terms of the angular momentum, Section 3 – main 

equations of attitude motion of two variable mass 

coaxial bodies system and unbalanced gyrostat, Sec-

tion 4 – development of research method for the atti-

tude motion of variable mass coaxial bodies and un-

balanced gyrostat, Section 5 – examples of analysis 

of the attitude motion of variable mass unbalanced 

gyrostat, Section 6 – conclusion.  



2.   Problem Definition 
 

Below we will derive the equations of mo-

tion of a system of k coaxial rigid bodies of variable 

mass with respect to translating coordinate frame 

OXYZ. The motion of the system is analyzed with 

respect to the following coordinate systems (Fig. 2): 

P  is a system of coordinates, fixed in absolute 

space, OXYZ is a moving coordinate system with 

origin at the point O, the axes of which remain col-

linear with the axes of the fixed system during the 

whole time of motion, and 
iii zyOx  are systems of 

coordinates with a common origin, rigidly connected 

to the i-th body (i = 1, 2, ... , k), rotating with respect 

to the system OXYZ. OXYZ system has its origin in a 

point lying on the common axis of rotation of the 

bodies and matching with the initial position of the 

centre of mass  0 :t t C O  . Points in the differ-

ent parts of the system are distinguished by the body 

they belong to, and in all expressions they are indi-

cated by the subscript i (where i is a number of an 

appropriate body). 

To construct the equations of motion we use 

the "short-range" hypothesis – particles which obtain 

a relative velocity when separated from the body no 

longer belong to the body and have no effect on it. In 

such case the theorem on the change in the angular 

momentum of a system of variable mass [23], written 

with respect to the fixed system of coordinates P, 

has the following form: 
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where ,
i i v r  

i
m is mass of appropriate point,  

e

PM  is the principal moment of the external forces, 
R

PM  is the principal moment of the reactive (jet) 

forces, and 
e

iS  is the sum of the angular momentum 

of the particles of body i, rejected in unit time in their 

translational motion with respect to the fixed system 

of coordinates. The angular momentum of a system 

of k bodies in coordinates system P  (Fig. 2) is 

defined by the following expression: 

 

1

0 0

1

,

1

( ) ( )

,

i i i

i

i i i

i

i i

k

P

i

k

i

i

k

i O O i C C i O

i

m

m

m m

  


  








 

      

    







K r v

r ρ v ω ρ

K r v ρ v

  (2) 
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iCρ  is the radius vector of the centre of mass 
iC  of 

body i in the OXYZ system and iω  is the absolute 

angular velocity of body i (and coordinates sys-

tem
iii zyOx ).  

            In order to write the theorem of change in the 

angular momentum in the OXYZ coordinate system 

we need to implement some auxiliary expressions: 
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where 
iCq  is the relative velocity of the centre of 

mass 
iC  due to a change in its position with respect 

to the bodies, due to the variability of their masses; 

iCw  is an acceleration of the point of body i, that 

currently matches with its center of mass, i.e. it is an 

acceleration of translation for a center of mass Ci , 

wO is the acceleration of point O. 

Let’s prove validity of the last expression from an 

expression group (3): 
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The relative motion of center mass with a ve-

locity 
iCq  can be illustrated with Fig. 3, which de-

scribes a burning process and corresponding geomet-



ric displacement of center of mass.  

Using expressions (2) and (3) it is possible to 

calculate the angular momentum derivative: 
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Let’s transform the terms on the right hand side of 

the equation (1): 
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where 
1

k
e e

i

i

F F  is resultant of system of external 

forces, 
1

k
R R

i

i

Ф Ф  is resultant of reactive (jet) 

forces, e

OM , R

OM  are the principal moments of the 

external and reactive forces with respect to the point 

O. 

 Using expressions (4) and (5), after like 

terms cancellation we can rewrite a theorem (1) in 

the following form: 
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 From the definition of center of mass and from the 

theorem on the motion of the center of mass of a sys-

tem of variable mass [23] the following expressions 

must hold: 
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where 
1

( ) ( )
k

i

i

m m t m t


   is mass of the system, C 

is vector of center of mass С of the system, ijN  are 

internal forces of interaction between bodies. 

Using expressions (6) and (7) we can write 

the theorem on the change in the angular momentum 

with respect to OXYZ system [28]: 
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Expression (8) corresponds to the assertion of the 

well-known theorem [23], taking into account the 

grouping of the terms according to the membership 

of the points of the body i (i = 1, ..., k).  

Using the idea of a local derivative for the 

angular momentum vector of each body in the sys-

tem of coordinates 
iii zyOx connected with the body, 

rotating with respect to OXYZ with angular velocity 

iω  Eq. (8) can be rewritten as follows: 
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The subscript outside the brackets of the local deriva-

tives indicates a coordinate system in which they 

were taken. Equation (9) expresses a vector-based 

form of the theorem of the change in the angular 

momentum of bodies of variable mass with respect to 

the translating axes. 
 

3.   Attitude Motion of Two Variable 

Mass Coaxial Bodies System 
 

We will consider the motion of a system of 

two bodies, where only 1st has a variable mass. Body 

2 does not change its inertial and mass characteris-

tics, calculated in the system of coordinates 
222 zyOx  

connected to the body, and, consequently, produces 

no reactive forces. This mechanical model can be 

used for research of attitude motion of dual-spin SC 

with operating solid-propellant rocket engine (coaxi-

al body 1).  

We will write the angular velocities and the 

angular momentum of the bodies in projections onto 

the axes of their connected systems of coordinates: 
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where Ii are inertia tensors of body i;  , ,i i ii j k  are 



the unit vectors of the system 
i i iOx y z . 

If both tensors are general then angular mo-

mentum of the bodies in projections onto the axes of 

their connected systems of coordinates is defined by 
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where Ai, Bi, Ci are general moments of inertia of 

body i, calculated in the corresponding system of 

coordinates connected to the body. 

The bodies of the system can only rotate 

with respect to one another in the direction of the 

common longitudinal axis, which coincides with 
2Oz  

(and with 
1Oz ). Here we will denote the angle and 

velocity of twisting of body 1 with respect to body 2 

in the direction of the longitudinal axis 
2Oz by  

  1 2,Ox Ox   and    respectively. The an-

gles {, , } of spatial orientation of the coaxial 

bodies with respect to the translating system of coor-

dinates OXYZ are indicated in Fig. 4. The ratio be-

tween the angular velocities and the angular accelera-

tions of two bodies in vector form are defined by 
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where 1σ k  is the vector of the relative angular 

velocity of the bodies, which has the only projection 

– onto common axis of rotation 
2Oz . The ratio be-

tween the components of the angular velocities for 

the two bodies is expressed by the following equa-

tions: 
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The theorem on the change in the angular momentum 

(9) in translating system of coordinates OXYZ can be 

rewritten in the form: 
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where  
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 By projecting the expression inside the 

square brackets (Eq. (13)) onto the axes of the sys-

tem 
111 zyOx  and using expressions (10) we obtain: 
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 During the simplification of equation (14) 

terms containing the derivatives of time-varying 

moment of inertia cancel out with terms following 

from the sum in square brackets (vector L). This is 

vividly reflected in the projection of L onto the con-

nected axis 
1Ox : 
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( )

O x

x
x

O x

xx xy xz

xyxx xz

xx

d
L m

dt

d dm
p y z

dt dt

dm dm
q x y r x z

dt dt

d
I t p I t q I t r

dt

dI tdI t dI t
p q r

dt dt dt

I t p

   




 


 

   
 

    
 

  

 

  

  







 

K
ω ρ ρ ω

K

1, 1 1, 1( ) ( ) .xy xzI t q I t r 

 

If tensors of inertia remain general for each moment 

of time  1, ( ) 0,ijI t i j  , then vector L may be 

rewritten: 

   1 1 1 1 1 1 1 1 1( ) .A t p B t q C t r  L i j k   (15) 

Taking expressions (14) and (12) into account, we 

can write Eq. (13) in terms of projections onto the 

axis of 
222 zyOx system, connected with body 2. 

When changing from system 
1 1 1Ox y z  to system 

222 zyOx  we will use an orthogonal matrix  δ  of ro-

tation by angle . As a result we obtain: 

  
1 1 1

2 2 2

1 1,

2,

2 2,

,

O Ox y z

O

O

Ox y z

e R

O O C O

d

dt

m

 

 
    
 

   

δ L ω K

K
ω K

M M ρ w

  

 (16) 

where  



 

cos sin 0

sin cos 0

0 0 1

 

 

 
 


 
  

δ . 

From the theorem on the motion of the cen-

tre of mass of a system of variable mass [23] the fol-

lowing expressions must hold: 

1

2

1 2

1 1 1 12

2 2 21

1 2 1

1 2 12 21

( ) ,

,

( ) ,

, ,

e R

C

e

C

e R

C C

e e e

m t

m

m t m

  

 

  

   

w F Ф N

w F N

w w F Ф

F F F N N

   (17) 

where 
e

F  is resultant of system of external forces, 

1

R
Ф  is reactive (jet) force, 

ijN  are internal forces of 

interaction between bodies (j, k=1, 2).  

The motion of center of mass of body 1 is 

easier to analyze as compound motion, where the 

motion of body 2 is translational. Considering the 

last remark, expressions for the acceleration of the 

center of mass will have the following form 

 

2 2 2

1

1 1

1 1

1

2 2 2

2 2 2

2

,

,

,

,

2 ,

C O C C

e r c

C

e

O C C

r

C C

c

C

     

  

     

    

  

w w ε ρ ω ω ρ

w w w w

w w ε ρ ω ω ρ

w σ ρ σ σ ρ

w ω σ ρ

  (18) 

where we – acceleration of translation, wr – relative 

acceleration, wc – Coriolis acceleration. 

 Expressions (18) imply:  



 

1 2

1

1 1

1 2 2

2 2 1

2

( )

( )

2 .

C C O C

C C

C C

m t m m m

m m t

   

    

     

w w w ε ρ

ω ω ρ σ ρ

σ σ ρ ω σ ρ

 

From last relation and (17) expression for accelera-

tion wO follow: 

  
1 1 1

1 2 2 2

1 2

1

( ) 2 .

e R

O C C

C C C

m m
m

m t

      

       


w F Ф ε ρ ω ω ρ

σ ρ σ σ ρ ω σ ρ

 (19) 

The  C Om ρ w  vector is represented using 

Eq. (19): 



 
1 1

1

1

2 2 2

1

2

( ) ( )

( )

2 .

e R

C O C

C C

C C

C

m

m t m t

m t

     

    

    

  


ρ w ρ F Ф

ε ρ ω ω ρ

σ ρ σ σ ρ

ω σ ρ

(20) 

If the change of mass of body 1, which has general 

tensors of inertia, is uniform along the whole vol-

ume, then tensors of inertia remain general tensors of 

inertia and the centre of mass of body 1 remains on a 

common axis of rotation 
2Oz . Thus we will consider, 

that the body 2 also has general tensors of inertia. 

The following expressions will take place in this case 

in terms of projections onto the axes of 
222 zyOx : 

 

 

 

 

 

1 1

2 2 2 2 2 2
1

2

2 2 2 2

2 2 2 2 2

0,0, , 0,0, ,

0,0, ( ) , 0,0, ( ) ,

( )

0 .

T T

C C

T T

C C C C

e R

C O C COx y z Ox y z

C

q

t t

m

m t p r q

q r p



 



   

   

        

 

   

σ q

ρ ρ

ρ w ρ F ρ Ф

i

j k

(21) 

Let's transform the moments of external and reactive  

(jet) forces in expression (16): 

1

,

.

e e e

O C C

R R R

O C C

  

  

M ρ F M

M ρ Φ M
    

Taking the expressions (21) into account, we will 

write Eqs. (16) in the matrix form: 

 
 

 

  
  
  

 

 

 

1 1 1 11 1

1 1 1 1 1 1

1 1 1 1 1 1

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2

2

( )

( ) ( )

( )

( )e R

C C C

C t B t q rA t p

B t q A t C t p r

C t r B t A t q p

A p C B q r

B q A C p r

C r B A q p

p r q

m t q

   
    

    
          

   
   

      
        



   

δ

M M 2 2 .

0

r p

 
 
 
  

          (22) 

Components of  1 1 1, ,p q r  in Eq. (22) must be ex-

pressed via  2 2 2, ,p q r  using (12). 

We will add an equation describing the rela-

tive motion of the bodies to the Eq. (16). A theorem 

on the change in the angular momentum projected 

onto the axis of rotation for the first body will have 

the following form: 



 
1

1
1

1 1, 1,

1 ,

e R

O Oz zOz

C O
Oz

M M M

m

    

   

L ω K

ρ w
  (23) 

where M   is the moment of the internal interaction 

of the bodies (e.g. action of internal engine or bear-

ing friction), ,

e

i OzM  is the moment of external forces 

acting only on body i. 

If tensors of inertia of body 1 remain the 

general ones for every moment of time and the centre 

of mass of body 1 remains on a common axis of rota-

tion 
2Oz , then Eq. (23) can be rewritten in the follow 

form: 

    1 1 1 1 1 1 1,( ) .e R

Oz zC t r B t A t q p M M M      (24) 

We will supplement the dynamic equations 

(16) and (23) (or their simplified analogs (22) and 

(24)) by the following kinematic equations (Fig.4): 

 

 

2 2

2 2

2 2 2

; sin cos ,

1
cos sin ,

cos

sin
cos sin .

cos

p q

p q

r p q

    

  



  



  

 

  

   (25) 

Let’s analyze the motion of a system of two dynami-

cally symmetrical bodies, equations (22) and (24) 

will be written in the following form: 

 

 

 

2 2 2

1 2 ,

2 2 2

1 2 ,

2 1 ,

1 1,

( ) ( ) ( )

( ) ,

( ) ( ) ( )

( ) ,

( ) ( ) ,

( ) ,

e R

C x x

e R

C y y

e R

C z z

R e

z Oz

A t p C t A t q r

C t q M M

A t q C t A t p r

C t p M M

C t r C t M M

C t r M M M









 

  

 

  

  

   

  (26) 

where 
2

1 2 1 2( ) ( ) ( ) ( ), ( ) ( ) .CA t A t A m t t C t C t C      

 

Systems (26) and (25) together form a com-

plete dynamic system for the research of attitude mo-

tion of dynamically symmetrical unbalanced gyrostat 

with variable mass.  

 

4.   Research method of attitude motion 

of variable mass coaxial bodies and 

unbalanced gyrostat 
 

Let's refer to a motion of coaxial bodies (un-

balanced gyrostat) of variable mass under an action 

of dissipative and boosting external moments de-

pending on components of angular velocities. Let the 

gyrostat consists of dynamically symmetrical main 

body (coaxial body 2) of a constant mass and a rotor 

(coaxial body 1) of the variable mass, which remains 

dynamically symmetrical during modification of a 

mass (Fig. 4).  

The fixed point O coincides with an initial 

geometrical position of a system’s center of mass. 

The unbalanced gyrostat has a varying relative angu-

lar velocity of rotor rotation around the main body. It 

is possible in connection with the existence of inter-

nal moment M   acting between coaxial bodies. 

Let’s assume there is a moment of jet forces only 

around a longitudinal axis Oz1  0 .R R

x yM M    

Let's implement the new variables corre-

sponding to the magnitude G of a vector of transver-

sal angular velocity and angle F between this vector 

and axis Oy2: 

2

2

( )sin ( ),

( )cos ( ).

p G t F t

q G t F t




               (27) 

Equations (26) will be rewritten in new variables as 

follows: 

   

 

2 1

2,

2

2

1, 2,

1 2 1 2

1
( ) ( ) ( ) , ,

( )

,
, ,

( )

( )
.

( ) ( )

F

e

OzG

R e e

z Oz Oz

F C t A t r C t f G F
A t

M Mf G F
G r

A t C

M M MC t M

C t C C t C










       


 

 

 
   


(28) 

In equations (28) the following disturbing functions 

describing exposures take place: 

   

   

, ,

, ,

, sin cos ,

1
, cos sin .

e e

G C x C y

e e

F C x C y

f G F M F M F

f G F M F M F
G

 

 
 

We will consider a case when the module of a trans-

versal angular velocity of main body is small in 

comparison to relative longitudinal rotation rate of 

the rotor: 

2 2

2 2 1.p q                  (29) 

From spherical geometry the formula for a nutation 

angel   (an angle between axes OZ and Oz2) follow 

cos cos cos .    

We will assume angles   and   to be small 

     OO  , .  Then the nutation angle will 

be defined by the following approximated formula: 

2 2 2.         (30) 



Using the expressions (22) and kinematic equations 

(20) we can write (second order infinitesimal terms 

are omitted): 

2

cos ( ), sin ( ),

, , ( ) ( ) ( ).

G t G t

r t F t t

 

   

   

    
             (31) 

Function ( )t  is a phase of spatial oscillations. 

Precession motion of the gyrostat with small 

nutation angles is obviously described by a phase 

space of variables  ,  . The phase trajectory in this 

space completely characterizes motion of the longi-

tudinal axis Oz2 (an apex of the longitudinal axis). 

Therefore our further researches will be connected to 

the analysis of this phase space and chances of be-

haviors of phase curves in this space. 

We can develop a special qualitative method 

of the analysis of a phase space. Main idea of the 

method is the evaluation of a phase trajectory curva-

ture in the phase plane  ,  . 

On the indicated plane the phase point will 

have following components of a velocity and accel-

eration: 

, , , .V V W W           

With the help of expressions (26) the curvature of a 

phase trajectory (k) is evaluated as follows: 

   
322 2 2 2 2 .k G                (32) 

If curvature magnitude increase, there will be a mo-

tion on a twisted spiral trajectory similar to a steady 

focal point (Fig. 5, case “a”) and if decreases - on 

untwisted. On twisted spiral trajectory motion condi-

tion can be noted as: 

20 0.k kk G G                     (33) 

For the analysis of the condition realization it is nec-

essary to study a disposition of zero points (roots) of 

a following function: 

2( ) .P t G G                  (34) 

Function (34) will be defined as a function of phase 

trajectory evolutions. 

Different qualitative cases of phase trajectory 

behaviors are possible depending on function P(t) 

zero points of (Fig.5). In the first case (Fig. 5, case 

“a”) the function is positive and has no zero on a 

considered slice of time  0,t T , thus the phase tra-

jectory is spirally twisting. In the second case (Fig. 5, 

case “b”) there exists one zero point and there is one 

modification in a monotonicity of the trajectory cur-

vature. The Cornu spiral, also known as clothoid, 

take place in case “b”. The third case (Fig. 5, case 

“c”) represents a number of zero points and the tra-

jectory has alternation of untwisted and twisted seg-

ments of motion; also there are some points of self-

intersection. 

 

5.   Research of attitude motion. 

5.1. Example 1. 
 

As an first example we will refer to a motion 

of coaxial bodies of variable mass under the influ-

ence of constant internal moment ( M const  ) and 

constant moment of jet forces ( R

zM const ). The 

analysis of a phase space is conducted using a devel-

oped method of curvature evaluation. 

We will suppose that the mass and moments 

of inertia are linear functions of time: 

1

1 1 2

1 1 2

( ) ,

( ) ( ), ,

( ) ( ), ,

r

m

m

m t m kt

A t m t A A const

C t m t C C const





 

  

  

  (35) 

where mr is initial mass of rotor, k is rate of mass 

change, and ,  are constants.  

Dependencies (35) are valid for a dual-spin 

SC when one of coaxial bodies is a solid-propellant 

rocket engine with packed and roll shaped grains. A 

linear law of mass change provides a constant thrust.  

In the rocket engines of a described type the grain 

usually burns uniformly over the whole volume, the 

grain density changes uniformly as well (Fig.3-c). 

The center of mass of an engine-body will show no 

displacement relative to the body, therefore 

1
.C rl const    Center of mass of the main body 

does not move as well, because the body doesn’t 

change its mass, therefore 
2

.C ml const    Let’s 

mark that constants lr and lm are in fact the distances 

between the bodies’ center of masses and the point O 

(Fig.4): 
2nl OC , 

1rl OC . For example, if body1 is 

solid cylinder, then the constants  and  are  

2 2 2 212 4 , 2,rH R l R      

where H is the height of a cylinder and R is the radi-

us. 

Magnitude С(t) will be defined by a linear-

fractional form: 

2 1

2 1

( )
( ) .

( )

m r
C

l m l m t
t

m m t






   (36)

 At t=0 the system’s center of mass C and the point О 

are matching, therefore  

1 2(0) 0, (0) ,

0, 0.

C r m

m r

l m l m

l l

   

 
 



On base (36) and (35) we will write time-

dependences for A(t) and C(t): 

2 2 2

( ) ,

( ) ,

rk l t
A t A at

m kt

C t C ct

  


 

   (37) 

where  

1 1

1 1

, (0), (0),

, (0), (0).

r m r

r m r

A A A A A a m

C C C C C c m





   

   
 

In a considered case equations (28) will ob-

tain the following form: 

 

2

0,

1
( ) ( ) ( ) ,

( )

( )
, .

( )

r

R

z

m r m r

G

F C t A t r C ct
A t

M C t M M
r

C C ct C C ct

 







      

   
 

 (38) 

Analytical solutions for angular velocity r2(t) and 

 t  are derived from equations (38): 

 

 

2 0 0 1 2 1

1 2 1

, ln 1 ,

1
, , / .

m

R

m z r

M
r r t s t s c t

C

s M C s M M c c C
c



 

      

    

(39) 

Kinematic equations (31) can be used to receive a 

solution for the angle  : 

2

0 0 .
2 m

M
r t t

C

     

Expression for a time derivative of a spatial oscilla-

tions phase   can be obtained using (31), (39) and 

(38): 

  

  

1 0

0 1 2 1

1 0

1
( ) ( )

( )

( ) ln 1

.

r

C t A t s t r
A t

C ct s t s c t

s t r



   


     



 

     (40) 

Formula (40) make it possible to receive an explicit 

expansion for evolution function (34), but this ex-

pression is difficult to analyze. It is reasonable to 

expand this expression into a series: 

0

( ) .ii

i

P t f t




       (41) 

Writing formula (41) on the basis of (34) we don’t 

take into account a constant multiplier G0.  

Further we will investigate the simplest case 

when the expansion for P(t) has only linear part (oth-

er terms of expansion are not taken into account). On 

the basis of expressions (40) we can get a polynomial 

of the first degree for the phase trajectory evolutions 

function (34): 

0 1( ) ,P t f f t      (42) 

where 

  2
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C
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C k l
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m

c c M M M
A



 



 


  

 
   

 

    
  

 

There is a unique zero point of function P(t): 

1 0 1/ .t f f   For implementation of a condition (33)

of twisted spiral motion it is necessary for the poly-

nomial to be steady ( 1 0t  ) and positive for all 

0t  . It is possible only in case the following condi-

tions fulfills: 

0 10, 0.f f       (43) 

We will consider a case when following contingen-

cies are correct: 

0 00, 0, 0.R

zr M    

In this case value f0 will be positive if following con-

dition is true: 

 0, .R

r r zc C a A cA aC AM    (44) 

In order f1 to be also positive the following condi-

tions must be satisfied: 
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z
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

 
  

 

  

   (45) 

Also f1 > 0 if following conditions hold true: 

2 2 2 , 3 0.R

r r zC k l acm M M     (46) 

Figure 6 illustrates the results of evolution function 

and appropriate phase trajectories numeric calcula-

tions. 



Figures Fig.6-a and Fig.6-b demonstrate the 

situation when (44) and (45) are satisfied, fig.6-c 

show the opposite case. Point indicates the beginning 

of phase trajectories. In case “a” evolution function 

has two roots and phase trajectory has three evolu-

tions: twisting-untwisting-twisting. In case “b” evo-

lution function has no root and single evolution of 

phase trajectory takes place – this evolution is spiral 

twisting. System parameters and initial conditions 

for obtained solutions are listed in table 1.  
 

Table 1              

Value of the system parameters for figure 6  
 

Quantity a b c 

M, Nm 1 -10 200 

MR
z, Nm 15 10 0.35 

0, radian/sec 10 1 16 

G0, radian/sec 0.2 0.2 0.2 

Am, kgm2 2.5 2.5 2.5 

Ar, kgm2 2.5 1.5 2 

Cm, kgm2 1 1 1 

Cr, kgm2 1.5 1.5 2 

а, kgm2/sec 0.08 0.05 0.1 

c, kgm2/sec 0.08 0.08 0.08 

lr, m 0.5 0.4 0.6 

k, kg/sec 1 1 1.2 

m1(0), kg 35 25 45 

m2, kg 35 35 35 

 

Conditions (44) and (45) can be used for the 

synthesis of dual-spin spacecraft parameters. In order 

to enhance the accuracy of SC’s longitudinal axis 

positioning it is necessary to realize precession mo-

tion with a decreasing nutation angle. This motion is 

realized when the conditions (44) and (45) are satis-

fied. 

For realization of more accurate researches, 

certainly, it is necessary to take higher degrees poly-

nomials P(t) (34) into account. However it was 

shown that an implemented analysis provides an ad-

equate description of the precessional motion evolu-

tions of variable mass coaxial bodies. 

Examined above case of investigation does 

not take into account many important aspects of vari-

able mass coaxial bodies motion. However the intro-

duced example has illustrated the approach to a re-

search of non-autonomous dynamical systems of in-

dicated type. 

 

5.2.   Example 2. 
 

Let’s refer to the other mode of motion with 

the following external and internal dissipative force 

moments: 

 

, ,

2, 1,

, ,

, .

e e

C x C y

e e

Oz Oz

M p M q

M r M r

 

  

   

    
  (47) 

Constants , ,  describe the influence of resisting 

substance on a gyrostat and the dissipation of energy.  

Let the mass and inertial parameters be de-

scribed by polynomial functions of time: 

 
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  (48) 

Dynamical equations of motion will have the 

following form (26): 

   

   
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2 2 2 1 2 2
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 (49) 

where 
2 1( ) ( ).C t C C t   

The last equation in (49) provides an equa-

tion and a general solution for an absolute longitudi-

nal angular velocity of rotor : 
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 (50)

where 

 
2

10

, ( ) .

t

C

dt
r J t

C t
        (51) 

Using expressions (50) we can notice that the third 

equation in (49) gives an equation and a general so-

lution for a longitudinal angular velocity of the main 

body: 

 
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exp .

C r M r
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  (52) 

In the case involved disturbing functions will 

have the form: 

   , , , 0,G Ff G F G f G F     (53) 

thereby first two equations can be rewritten the fol-

lowing way: 



 2 2 1 2
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A t

F C r C t A t r
A t
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  (54) 

This implies a solution for the amplitude of the 

transverse angular velocity: 

   0 exp ( ) ,AG t G J t     (55) 

where  

 
0

0

1
( ) , 0.

t

AJ t G
A t

     (56) 

The value of integrals contained in expressions (50) 

and (55) can be calculated analytically: 
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  (57) 

where ,i i    are the roots of 1( ), ( )A t C t  polyno-

mials, which contain no real roots within a consid-

ered interval  0,t T , because the moments of 

inertia are strictly positive quantities. Let’s mark that 

formulas can be checked by differentiation.  

Expressions (50), (52) and (55) provide final 

analytic solutions for the longitudinal angular veloci-

ties and the amplitude of transverse angular velocity 

of the gyrostat. Using the first equation in (54) we 

can obtain an expression for the evolution function: 

2 21
( ) .

2 ( )

d
P t G

dt A t

  
  

 
   (58) 

 Let’s consider a case when there are no mo-

ments of internal interaction and jet forces and the 

main body has no initial longitudinal angular veloci-

ty [26 – 29]: 

00, 0.R

zM M r        (59) 

Let’s perform some supplementary transformations 

of quantities presented in expression (58). Replacing 

derivatives ,   with corresponding right hand 

sides of equations (54), (50) and considering that 

( ) 0r t  , we can write the following expressions: 
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  (60) 

Now function (58) will have the following form: 

 
2

1
1 1 13
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G C

P t C A AC A C
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 
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     (61) 

Solutions (55) and (50) imply that 

0, 0G    , therefore a multiplier, placed before 

brakets in (61), is strictly positive over the whole 

interval  0,t T . Considering the last remark, func-

tion P(t) may be replaced by the following expres-

sion: 

1 1 1( ) .P t C A AC A C        (62) 

Expressions (62) and (48) imply, that func-

tion P(t) – is a polynomial with a degree of 

N=m+n-1, that is why a theoretically valid number of 

phase trajectory evolutions can not exceed N+1.  

 Using function (62) we can obtain the fol-

lowing limitations for the moment of inertia func-

tions, providing the twisted-in phase trajectory and 

therefore the decreasing amplitude of nutation angle: 

( ) ( ) ( ) ( ) , ( ) ( ) .C t A t C t A t C t A t     (63) 

This limitations particularly result in the condition 

for the linear functions of moments of inertia in the 

absence of dissipative moments ( = =0), given in 

articles [27, 28]: 

.ra A c C  

 In general case, when constraints (59) are not 

satisfied, conditions similar (63) have not been 

found. It is possible in this case to receive numerical 

results for the evolution function and phase trajectory 

(Fig. 7). The following parameters and polynomial 

time-dependences of inertia moments have been used 

for computation: 
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It can be noticed (Fig. 7) that function P(t) has five 

roots on examined time-interval and consequently 

phase trajectory has six evolutions. 

 

5.3.   Example 3. 
 

 Omitting the solution details we consider the 

numerical simulation of previous example when iner-

tia moments are simplest harmonic function: 
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For this case solutions (50) and (55) remain valid, 

but expressions for integrals (51) and (56) take on a 

value: 
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where operation (x div y) corresponds to evaluation 

of integer part of division x/y.  

Evolution function take on form: 
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(66) 

where 

2 2( ) ( ) .zK t C r C t    

Though quite simple analytical description of 

evolution function (66), the phase trajectory behavior 

in considered case can be complex. Phase trajectory 

can be regular (Fig.8-a), or can demonstrate unpre-

dictable forms, which typical in chaotic dynamics 

(Fig.8-b, c). 

On Fig.8 three cases of phase trajectories are 

shown. These trajectories are calculated for parame-

ters from table 2; constants for inertia moments de-

pendences (64) are equal a0=c0=2, a1=c1=1 (kg×m2), 

 = 3 (1/sec). 

Case “a” correspond to motion without reac-

tive and internal forces moments  0R

zM M   . In 

this case quasi-periodic evolution function (with 

slow damped amplitude) take place and phase trajec-

tory is also quasi-periodic and regular.  

In presence reactive and internal forces mo-

ments (cases “b” and “c”) evolution function become 

nonperiodic with complex changing amplitude rate. 

In these cases phase trajectories become nonregular 

and similar to chaotic. Cases “b” and “c” correspond 

to a positive  , , 0     and negative  , , 0     

dissipation. 

It is necessary to note, what all calculations 

were conduct in MAPLE 11 [31] with use of numeri-

cal solution of stiff initial value problem (absolute 

error tolerance is equal 0.0001). 

Table 2  

Value of the system parameters for figure 8  
 

Quantity a b c 

M, Nm 0 0.1 0.5 

MR
z, Nm 0 0.1 0.03 

r0, radian/sec 15 -1 1 

Ω0, radian/sec -18 -10 -10 

G0, radian/sec 0.01 0.01 0.01 

C2, kgm2 2.5 2.5 2.5 

ν, kg×m2/sec 0.00001 0.001 -0.001 

μ, kg×m2/sec 0.00001 0.001 -0.002 

λ, kg×m2/sec 0.00001 0.001 -0.003 

T, sec 50 470 500 

 
 

6.   Conclusion 

The article described a research of the phase 

space of non-autonomous dynamical system of coax-

ial bodies of variable mass using a new method of 

phase trajectory curvature analysis. 

Developed method allows to estimate the 

phase trajectory form.  

System motion can be both simple regular 

and very complicated nonregular (chaotic).  

Regular motions are realized at evolution 

functions with finite number of roots (polynomial) or 

at periodic evolution functions. Complicated non-

regular motions arise at nonperiodic alternating 

evolution functions with infinite number of roots. 

Results of the research have an important 

applied value for the problems of space flight me-

chanics and especially for coaxial spacecrafts.  
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Legends for figures 

 
Fig.1. Scattering of thrust and transfer orbit 

 

 

Fig.2. Coaxial bodies system and coordinates system 

 

 

Fig. 3. Change of center of mass position with respect to 

the bodies, due to the variability of their masses (cases of 

body burn): a – right to left burn,  b – left to right burn, c –

burn with uniform reduction of body density 



 

 

Fig.4. Two coaxial bodies system, coordinates systems 

and Euler’s type angels 

 

 

Fig. 5. Cases of phase trajectory behaviors 

 

 

Fig.6. Evolution function and  cases of phase trajectory 

evolutions depends on conditions (44) and (45) fulfill-

ment: in cases “a” and “b” conditions are satisfied and 

first evolution of phase trajectory is spiral twisting; in case 

“c” condition are unsatisfied and first evolution is untwist-

ing. 

 

 

Fig.7. Numerical simulation results for the evolution func-

tion and phase trajectory 

 

 

Fig.8. Evolution functions and phase trajectories in case 

with harmonic inertia moments 

 

 



 

 

 

 
Fig.1. Scattering of thrust and transfer orbit 

 

 

 

 

 

Fig.2. Coaxial bodies system and coordinates system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Change of center of mass position with respect to the 

bodies, due to the variability of their masses (cases of body 

burn): a – right to left burn,  b – left to right burn, c – burn with 

uniform reduction of body density 

 

 

 

 

 

 

 
Fig.4. Two coaxial bodies system, coordinates systems and 

Euler’s type angels 

 

 

 
 

 

 



 

 

 

 
 Fig. 5. Cases of phase trajectory behaviors 

 

 

 

 

 

 
Fig.6. Evolution function and  cases of phase trajectory evolutions depends on conditions (44) and (45) fulfillment: 

In cases “a” and “b” conditions are satisfied and first evolution of phase trajectory is spiral twisting; 

In case “c” condition are unsatisfied and first evolution is untwisting 

 



 

 

 

 

 

 

 

 

 
Fig.7. Numerical simulation results for the evolution function and phase trajectory 

 



 Fig.8. Evolution functions and phase trajectories in case with harmonic inertia moments 


